Software: FEM - Tutorial - Strukturoptimierung - Optimierungsverfahren: Unterschied zwischen den Versionen

Aus OptiYummy
Zur Navigation springenZur Suche springen
KKeine Bearbeitungszusammenfassung
Zeile 21: Zeile 21:
* Bei der "reinen" Topologie-Optimierung wird die Festigkeit des Bauteils nicht berücksichtigt, sondern nur für einen minimalen Füllgrad des Bauraums auf eine maximale Steifigkeit hin optimiert. Deshalb ist es erforderlich, anhand von Erfahrungswissen oder einer Grobdimensionierung, ein relatives Zielvolumen (entspricht dem Füllgrad) für das Bauteil vorzugeben (z.B. 40%).
* Bei der "reinen" Topologie-Optimierung wird die Festigkeit des Bauteils nicht berücksichtigt, sondern nur für einen minimalen Füllgrad des Bauraums auf eine maximale Steifigkeit hin optimiert. Deshalb ist es erforderlich, anhand von Erfahrungswissen oder einer Grobdimensionierung, ein relatives Zielvolumen (entspricht dem Füllgrad) für das Bauteil vorzugeben (z.B. 40%).
* Es ist außerdem zu definieren, wo die Gestalt nicht verändert werden darf (z.B. Bohrungen zur Lagerung/Befestigung oder Anlageflächen - ''Beispiel aus Autodesk-Hilfe zu Fusion 365''):<div align="center"> [[Bild:Software_FEM_-_Tutorial_-_Strukturoptimierung_-_Optimierungsverfahren_-_Topologie_Bereiche_fixieren.gif|.]] </div>
* Es ist außerdem zu definieren, wo die Gestalt nicht verändert werden darf (z.B. Bohrungen zur Lagerung/Befestigung oder Anlageflächen - ''Beispiel aus Autodesk-Hilfe zu Fusion 365''):<div align="center"> [[Bild:Software_FEM_-_Tutorial_-_Strukturoptimierung_-_Optimierungsverfahren_-_Topologie_Bereiche_fixieren.gif|.]] </div>
* ''Hinweis:'' Für Flächen-Kräfte bleiben auch die zugehörigen Flächen als Bereiche erhalten!
* Meist existieren Symmetriebedingungen, welche in Form von Symmetrie-Ebenen zu beschreiben sind (z.B. die Mittel-Ebene des obigen Bauteils).


Im Ergebnis der Topologie-Optimierung entsteht eine Tragwerk-ähnliche Struktur im Bauraum außerhalb der fixierten Bereiche. Diese Struktur ist dann in der Lage, mit dem verfügbaren Material einen möglichst gleichmäßigen Kraftfluss zwischen den Belastungsstellen des Bauteils zu realisieren:
Im Ergebnis der Topologie-Optimierung entsteht eine Tragwerk-ähnliche Struktur im Bauraum außerhalb der fixierten Bereiche. Diese Struktur ist dann in der Lage, mit dem verfügbaren Material einen möglichst gleichmäßigen Kraftfluss zwischen den Belastungsstellen des Bauteils zu realisieren:
* An allen optimierten Stellen des Bauteils erfolgt eine homogene, minimal mögliche Verformung.
* An allen optimierten Stellen des Bauteils erfolgt eine homogene, minimal mögliche Verformung.
* Die minimale Nachgiebigkeit entspricht einer maximalen Steifigkeit.
* Die minimale Nachgiebigkeit entspricht einer maximalen Steifigkeit.
* ''Hinweis:'' Flächen, auf denen Belastungen wirken, bleiben als Bereiche erhalten.


==== Form-Optimierung ====
==== Form-Optimierung ====

Version vom 15. April 2018, 15:54 Uhr

Optimierungsverfahren (Klassifizierung)

Es geht in diesem Abschnitt nicht um konkrete Optimierungsalgorithmen und nicht um konkrete Methoden der Zielfunktionsformulierung. Es soll hier nur ein Überblick gegeben werden, wofür numerische Optimierung im Rahmen der Strukturoptimierung genutzt wird, an welchen Strukturparametern "gedreht" werden kann und welche Prinzipien dabei zur Anwendung kommen.

Einsatz im Konstruktionsprozess

Innerhalb des Konstruktionsprozesses werden die einzelnen Aspekte einer Bauteil-Struktur nacheinander in der folgenden Reihenfolge jeweils einer Optimierung unterzogen (Bild aus Arion-Theoriehandbuch):

  1. Topologie
  2. Form (Gestalt)
  3. Abmessungen (Dimensionierung)
  4. Material
    .

Für die einzelnen Aspekte können dabei isoliert optimale Lösungen gesucht werden. Meist existieren jedoch Wechselwirkungen zwischen den Struktur-Aspekten, die dann z.B. zu einem iterativen Vorgehen zwingen, wenn die unterschiedlichen Kriterien nicht zu einer gemeinsamen Zielfunktion zusammengeführt werden können:

  • Die klassische Optimierung der Abmessungen und des Materials besitzt zwar ein hohes Potential zur Verbesserung der Funktionalität, besitzt aber meist nur geringen Einfluss auf die Kosten im Produktlebenszyklus.
  • Die vorgelagerte Topologie- und Formoptimierung mit einem weit höheren Einfluss auf die Produktkosten überlässt man heute meist noch der Kreativität und dem Erfahrungswissen der Entwicklungsingenieure.

Die Optimierung der einzelnen Struktur-Aspekte verfolgt unterschiedliche Ziele. Diese sollen im Folgenden kurz erläutert werden:

Topologie-Optimierung

Ziel der Topologie-Optimierung ist immer die Erfüllung der Anforderungen an ein Bauteil mit möglichst geringem Einsatz von Material:

  • Häufig wird dafür z.B. eine maximale Steifigkeit bei niedrigem Volumen angestrebt. Dies ermöglicht effizienteren Materialeinsatz und verbessert die Bewegungsdynamik durch geringere Masse.
  • Ausgangspunkt ist der Bauraum, welcher für das betrachtete Bauteil zur Verfügung steht. Dieser wird im Sinne einer Ausgangslösung vollständig mit einem "sinnvollen" Material gefüllt.
  • Anzugeben sind alle Stellen, an denen Belastungen auf das Bauteil wirken, sowie die Art der jeweiligen Belastung.
  • Bei der "reinen" Topologie-Optimierung wird die Festigkeit des Bauteils nicht berücksichtigt, sondern nur für einen minimalen Füllgrad des Bauraums auf eine maximale Steifigkeit hin optimiert. Deshalb ist es erforderlich, anhand von Erfahrungswissen oder einer Grobdimensionierung, ein relatives Zielvolumen (entspricht dem Füllgrad) für das Bauteil vorzugeben (z.B. 40%).
  • Es ist außerdem zu definieren, wo die Gestalt nicht verändert werden darf (z.B. Bohrungen zur Lagerung/Befestigung oder Anlageflächen - Beispiel aus Autodesk-Hilfe zu Fusion 365):
    .
  • Meist existieren Symmetriebedingungen, welche in Form von Symmetrie-Ebenen zu beschreiben sind (z.B. die Mittel-Ebene des obigen Bauteils).

Im Ergebnis der Topologie-Optimierung entsteht eine Tragwerk-ähnliche Struktur im Bauraum außerhalb der fixierten Bereiche. Diese Struktur ist dann in der Lage, mit dem verfügbaren Material einen möglichst gleichmäßigen Kraftfluss zwischen den Belastungsstellen des Bauteils zu realisieren:

  • An allen optimierten Stellen des Bauteils erfolgt eine homogene, minimal mögliche Verformung.
  • Die minimale Nachgiebigkeit entspricht einer maximalen Steifigkeit.
  • Hinweis: Flächen, auf denen Belastungen wirken, bleiben als Bereiche erhalten.

Form-Optimierung

...

Groeszen-Optimierung

...

Material-Optimierung

...

Art der Optimierungsparameter

Parameterfreie Optimierung

...

Parameter-Optimierung

...

Art der Loesungssuche

Empirische Verfahren

...

Naturwissenschaftlich-mathematische Verfahren

===>>> Diese Seite wird zur Zeit erarbeitet !!!